a2 United States Patent

Derbeko et al.

US009336157B1

US 9,336,157 B1
*May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(63)

(1)

(52)

(58)

SYSTEM AND METHOD FOR IMPROVING
CACHE PERFORMANCE

Applicant: EMC Corporation, Hopkinton, MA
(US)

Inventors: Philip Derbeko, Modiin (IL);

Constantine Antonovich, Ramat Gan

(IL); Alex Veprinsky, Brookline, MA

(US); Arieh Don, Newton, MA (US);

Kevin Martin, Dracut, MA (US)

Assignee: EMC Corporation, Hopkinton, MA

(US)
Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/468,084

Filed: Aug. 25,2014
Related U.S. Application Data

Continuation of application No. 13/436,911, filed on
Mar. 31, 2012, now Pat. No. 8,874,799.

Int. Cl1.

GO6F 3/00 (2006.01)

GO6F 12/08 (2016.01)

GO6F 3/06 (2006.01)

U.S. CL

CPC GO6F 12/0891 (2013.01); GOG6F 3/061

(2013.01); GOGF 3/0665 (2013.01); GO6F
3/0689 (2013.01); GOGF 3/0659 (2013.01)
Field of Classification Search
None
See application file for complete search history.

I)

§K

client
o
application_|)

dient |)
apphcation [~

cellular
network /
bridge

client
spplcation_|).

(56) References Cited

U.S. PATENT DOCUMENTS

6,480,934 B1 11/2002 Hino et al.
6,889,286 B2 5/2005 Hino et al.
7,039,727 B2 5/2006 Camara et al.
7,222,172 B2 5/2007 Arakawa et al.
7,246,179 B2 7/2007 Camara et al.
7,313,636 B2 12/2007 Qietal.
7.469,289 B2 12/2008 Arakawa et al.
7,685,171 B1* 3/2010 Beaversonetal. ... 707/999.202
7,694,096 B2 4/2010 Haustein et al.
(Continued)
OTHER PUBLICATIONS

Non-Final Office Action issued in counterpart U.S. Appl. No.
13/436,911 on Oct. 10, 2013.

(Continued)

Primary Examiner — Henry Tsai

Assistant Examiner — Aurangzeb Hassan

(74) Attorney, Agent, or Firm — Brian J. Colandreo; Mark
H. Whittenberger; Holland & Knight LLP

(57) ABSTRACT

A method, computer program product, and computing system
for receiving a Mode Select command concerning a single
LUN from each of a plurality of potential hosts. Each Mode
Select command defines control information and host identi-
fier information concerning the potential host associated with
the Mode Select command. The received Mode Select com-
mands are processed serially and in accordance with the order
in which the Mode Select commands were received. The first
Mode Select command received is accepted and subsequent
Mode Select commands received are rejected, thus defining
an accepted Mode Select command and one or more rejected
Mode Select commands. The control information and host
identifier information included within the accepted Mode
Select command are written to a buffer associated with the
single LUN. The buffer includes a control field and a GUID
field.

18 Claims, 7 Drawing Sheets

!

)

I

A

¥j /\ data caching)
storage process
ystem (12

US 9,336,157 B1
Page 2

(56)

7,716,419
7,984,227
8,090,917
8,122,191
8,311,663
8,370,570
8,386,705
8,554,954
8,874,799
8,914,584
8,914,585
2002/0083285
2005/0172052
2008/0077752
2010/0077106
2010/0174921

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2

Al

5/2010
7/2011
1/2012
2/2012
11/2012
2/2013
2/2013
10/2013
10/2014
12/2014
12/2014
6/2002
8/2005
3/2008
3/2010
7/2010

Kashima et al.
Mimatsu et al.
Haustein et al.
Desimone et al.
Haustein et al.
Motonaga et al.
Desimone et al.
Derbeko et al.
Derbeko et al.
Derbeko
Derbeko et al.
Sanada et al.
Sanada et al.
Kinoshita
Komikado et al.
Abzarian et al.

....... 711/154

2010/0241807 Al
2011/0208940 Al 82011 Naganuma et al.
2013/0013285 Al 1/2013 Cyretal.

OTHER PUBLICATIONS

9/2010 Wu et al.

Notice of Allowance issued in counterpart U.S. Appl. No. 13/436,911
on May 27, 2014.

Non-Final Office Action issued in counterpart U.S. Appl. No.
13/436,920 on May 22, 2014.

Notice of Allowance issued in counterpart U.S. Appl. No. 13/436,920
on Sep. 11, 2014.

Notice of Allowance issued in counterpart U.S. Appl. No. 13/436,918
on Jun. 21, 2013.

Non-Final Office Action issued in counterpart U.S. Appl. No.
13/436,915 on Jun. 4, 2014.

Notice of Allowance issued in counterpart U.S. Appl. No. 13/436,915
on Aug. 22, 2014.

* cited by examiner

US 9,336,157 B1

Sheet 1 of 7

May 10, 2016

U.S. Patent

sss004d
Buiyoeo elEp

(81) spomiau

(z1) woyshs
obeuo)s

yemmmm——- e

1 wep

uogeondde

abpug
/ SNOM}BU

Jegnyjjen

nnnnnnnnnnnnnnn
"~

uoneodde
juelo

uopesdde
F |

uoneoydde
N a0

[goc
g

o
[27]

U.S. Patent May 10, 2016 Sheet 2 of 7 US 9,336,157 B1

116 118 120

12
5 136
server computer / controller
> (100)
\-I input - output logic I server
A computer /
124) 4 controiler
\~] processing logic I {134}
A 138
. 1 : S
] gata caching L —i first cache system l
Process !
H 142 t 144

S o

7 network N
{ infrastructure ,
N, (M4

/

~ /

14

6
data array (130)
second cache J

system(128)

102 - 104 106 - 108 - 110 -
Ta

J _J
T T2 Ts 0o 00
C

ontent
{132)

faslieatiasioath i indhasinadbasiiond N

US 9,336,157 B1

Sheet 3 of 7

May 10, 2016

U.S. Patent

4214

G 'Ol

oo | fvEowny
&9
gogo|qe bLOLLL v va1/ 9NN
epojpoe 110100 0vea1/0NNT —
Bqoojge OLLLLL S va1/0NNT — %
. 86¢
eyozeje LLL0LO Lvat! v NN
zqe(eqe 10004 L ¥ Y81/ € NN L e
qyozeye 0LLOL Lva1/ L NN i
Aqejeqe LOLLLL L vE1/ 0NN
(952) ($52) (z0Z / 002) SSauppY |
Jayuapy JusuoD $SAIPpY aYoeD 1sii4 | obeio)g Aeuy BiQ
(062) Aoyoeuig weuo) ¢ 'Oi4
BUOZE|E <= (.8L1) BlRQ
Zva1/0NNT —
(911) 00z
1senbay alup 1B
¥ 'Ol
BIOJPOE <= (8iL1) eleq@
S va1/0NNT — 0OvE1/0NNT —
(0z1) ez (911) 002
1sanboy pesy vjeq 1senbay SlUM BIR(

US 9,336,157 B1

Sheet 4 of 7

May 10, 2016

U.S. Patent

ﬁ

208

908

¥oe

20€

00¢

9914

)
3

N(Y'T 913uts
ot} JO [o1UOd SuNosal

SOJRZ 210U 10 U0 YHMm

PIPY AIND oY) Junejndod U;

[l
Py

t

)

PUBTULOD

199{2g opoN paoafar

YLD YIM PRIBIO0sse
1507 o1} SwAoU

ememccecans”

SOIDZ AIOUIL JO JUO PTM
pro1} jonuods ayl Sunendod

.
I
'

1

VO RILIOJUT JAT[TIHSPI
180 puE [05u0d Futjm

1

Aqjeuas
SPURLITIOD 109]9S PO
P2aA12021 3y Suissasoid

1

N1 ofBuis
i mmwcaouzcu SpuBtiuod
199738 PO wg.ﬁoo@.ﬁ

~

oie

US 9,336,157 B1

Sheet S of 7

May 10, 2016

U.S. Patent

4 79ld

-

9%

150y
) SWAINOU puR PUBLILIOD
10972§ apoN dunoolar

t

09¢e

NIYT 9} Yila pAIBroosse
ayor 1807) Sutysnyy

»

9G¢€

Jagng e o)
UOUBULIONI JONUGD Sumiim

1

=

se

UOIIBULIOL JOLIIUSPL {OUOD
N[SOUBW UOTBUIIOFUT
JOTTRIAPY 150Y SUIULITHOD

1

A0S

puBwTod
109[95 2poAL a3 Suissasoad

1

-

0se

NI ® SUIUIS0UOD pUBLUILOD
10905 APOIA B SUIATRIII

xpng o
< | Wy pRYy {0nuoo
1 oy 09 0J0z © Supiim

~

85¢

US 9,336,157 B1

Sheet 6 of 7

May 10, 2016

U.S. Patent

8 'Ol

l

jsoy ay SwAnou

AR

1

-

134

180U o1 03 N{Y'T 10518) ouo
15B9] I8 3Y) JO [0oNU0d Tmiuap

»

A

20v

1501 A1 01 N1 10848 auo
15B0] J€ 1)) JO [0Ru0d Sunueld

1

PUBLILWOD
19915 SpoN) Fuissasoxd

Q0

»

Oy

NY'T 198xe1
BUO 158 J¥ 21} 10} PURTHIOD
12912 opo & Junredard

»

[4ti4

TI2AD YseIo B 0 Joud 150y

® Ag PO[JORU0a Fuloq sem Jmy)

N(1T 2u0 jse] 18 Fupurua)ep

1

-~

ooy

aouanbas j100¢ai
© JO UOIMIIIXD o) SUISUIS

US 9,336,157 B1

Sheet 7 of 7

May 10, 2016

U.S. Patent

6 "Old

7 3S0Y 1STG 243 013501 PU0ODS A WOy
yor | NSYT 99 JO jonuoo Suisysuen

1

1501 PUOD3S

¢ oW WLy NrY'T 913 JO [0 27138 0)
zov | 3807 I8113 3 Aq 1dwape a1 Sunioge

i

AquIA 1S S1180Y
PUODaS Y] J1 SUNINAP 01 N[2Y)
[IM PAJRIDOSSE JAJINg Ay Swipeas

1

Anpiqeia ayed1pui 0} pouad
UOHEDLLLIAA) SULID 19j30q 243
Kjrpow 03 150y puodas ay) Sumoje

1

N 971 M pajerdosse

09y

84y

IBfInG oY)
(7] 10HNg € 0) UOTRULOIUL LDIFHUIPT < | unps prey jonuos [N
s 150Y pue BE%O ay) Sumim i | om 01 0107 & Sunum | oo
PUETHTOn

x 129198 apoN 9y3 Fussasord

[4<14

- # PUBLRILIOD 199{9S 9POIA B FUIAIOL

ogy

US 9,336,157 B1

1
SYSTEM AND METHOD FOR IMPROVING
CACHE PERFORMANCE

CROSS-REFERENCE PARAGRAPH

The subject application is a continuation of U.S. patent
application Ser. No. 13/436,911, filed on Mar. 31, 2012. The
entire content of the application is herein incorporated by
reference.

TECHNICAL FIELD

This disclosure relates to cache memory systems and, more
particularly, to systems and methods for improving the per-
formance of cache memory systems.

BACKGROUND

Storing and safeguarding electronic content is of para-
mount importance in modern business. Accordingly, various
systems may be employed to protect such electronic content.

The use of solid-state storage devices is increasing in popu-
larity. A solid state storage device is a content storage device
that uses solid-state memory to store persistent content. A
solid-state storage device may emulate (and therefore
replace) a conventional hard disk drive. Additionally/alterna-
tively, a solid state storage device may be used within a cache
memory system. With no moving parts, a solid-state storage
device largely eliminates (or greatly reduces) seek time,
latency and other electromechanical delays and failures asso-
ciated with a conventional hard disk drive.

SUMMARY OF DISCLOSURE

In a first implementation, a computer-implemented
method includes receiving a Mode Select command concern-
ing a single LUN from each of a plurality of potential hosts.
Each Mode Select command defines control information and
host identifier information concerning the potential host asso-
ciated with the Mode Select command. The received Mode
Select commands are processed serially and in accordance
with the order in which the Mode Select commands were
received. The first Mode Select command received is
accepted and subsequent Mode Select commands received
are rejected, thus defining an accepted Mode Select command
and one or more rejected Mode Select commands. The con-
trol information and host identifier information included
within the accepted Mode Select command are written to a
buffer associated with the single LUN. The buffer includes a
control field and a GUID field.

One or more of the following features may be included.
The host associated with each of the one or more rejected
Mode Select commands may be notified. Control ofthe single
LUN may be reset to a non-controlled state if the single LUN
is restarted. Resetting control of the single LUN to a non-
controlled state may include populating the control field asso-
ciated with the single LUN with one or more zeros and popu-
lating the GUID field associated with the single LUN with
one or more zeros.

The single LUN may be included within a data array. The
data array may include one or more electro-mechanical stor-
age devices. One or more of the potential hosts may be appli-
cation servers.

In another implementation, a computer program product
resides on a computer readable medium that has a plurality of
instructions stored on it. When executed by a processor, the
instructions cause the processor to perform operations includ-

10

15

20

25

30

35

40

45

50

55

60

2

ing receiving a Mode Select command concerning a single
LUN from each of a plurality of potential hosts. Each Mode
Select command defines control information and host identi-
fier information concerning the potential host associated with
the Mode Select command. The received Mode Select com-
mands are processed serially and in accordance with the order
in which the Mode Select commands were received. The first
Mode Select command received is accepted and subsequent
Mode Select commands received are rejected, thus defining
an accepted Mode Select command and one or more rejected
Mode Select commands. The control information and host
identifier information included within the accepted Mode
Select command are written to a buffer associated with the
single LUN. The buffer includes a control field and a GUID
field.

One or more of the following features may be included.
The host associated with each of the one or more rejected
Mode Select commands may be notified. Control ofthe single
LUN may be reset to a non-controlled state if the single LUN
is restarted. Resetting control of the single LUN to a non-
controlled state may include populating the control field asso-
ciated with the single LUN with one or more zeros and popu-
lating the GUID field associated with the single LUN with
one or more zeros.

The single LUN may be included within a data array. The
data array may include one or more electro-mechanical stor-
age devices. One or more of the potential hosts may be appli-
cation servers.

Inanother implementation, a computing system includes at
least one processor and at least one memory architecture
coupled with the at least one processor, wherein the comput-
ing system is configured to perform operations including
receiving a Mode Select command concerning a single LUN
from each of a plurality of potential hosts. Each Mode Select
command defines control information and host identifier
information concerning the potential host associated with the
Mode Select command. The received Mode Select com-
mands are processed serially and in accordance with the order
in which the Mode Select commands were received. The first
Mode Select command received is accepted and subsequent
Mode Select commands received are rejected, thus defining
an accepted Mode Select command and one or more rejected
Mode Select commands. The control information and host
identifier information included within the accepted Mode
Select command are written to a buffer associated with the
single LUN. The buffer includes a control field and a GUID
field.

One or more of the following features may be included.
The host associated with each of the one or more rejected
Mode Select commands may be notified. Control ofthe single
LUN may be reset to a non-controlled state if the single LUN
is restarted. Resetting control of the single LUN to a non-
controlled state may include populating the control field asso-
ciated with the single LUN with one or more zeros and popu-
lating the GUID field associated with the single LUN with
one or more zeros.

The single LUN may be included within a data array. The
data array may include one or more electro-mechanical stor-
age devices. One or more of the potential hosts may be appli-
cation servers.

The details of one or more implementations are set forth in
the accompanying drawings and the description below. Other
features and advantages will become apparent from the
description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic view of a storage system and a
data caching process coupled to a distributed computing net-
work;

US 9,336,157 B1

3

FIG. 2 is a diagrammatic view of the storage system of FIG.
1;

FIG. 3 is a diagrammatic view of a data write request for
use with the data caching process of FIG. 1;

FIG. 4 is a diagrammatic view of a data read request foruse
with the data caching process of FIG. 1;

FIG. 5 is a diagrammatic view of a content directory foruse
with the data caching process of FIG. 1;

FIG. 6 is a first flow chart of the data caching process of
FIG. 1,

FIG. 7 is a second flow chart of the data caching process of
FIG. 1,

FIG. 8 is a third flow chart of the data caching process of
FIG. 1; and

FIG. 9 is a fourth flow chart of the data caching process of
FIG. 1.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

General Information

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a method, system, or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, the present disclosure may take the form of a com-
puter program product on a computer-usable storage medium
having computer-usable program code embodied in the
medium.

Any suitable computer usable or computer readable
medium may be utilized. The computer-usable or computer-
readable medium may be, for example but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, device, or propagation
medium. More specific examples (a non-exhaustive list) of
the computer-readable medium would include the following:
an electrical connection having one or more wires, a portable
computer diskette, a hard disk, a random access memory
(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a transmission media such
as those supporting the Internet or an intranet, or a magnetic
storage device. Note that the computer-usable or computer-
readable medium could even be paper or another suitable
medium upon which the program is printed, as the program
can be electronically captured, via, for instance, optical scan-
ning of the paper or other medium, then compiled, inter-
preted, or otherwise processed in a suitable manner, if neces-
sary, and then stored in a computer memory. In the context of
this document, a computer-usable or computer-readable
medium may be any medium that can contain, store, commu-
nicate, propagate, or transport the program for use by or in
connection with the instruction execution system, apparatus,
or device. The computer-usable medium may include a
propagated data signal with the computer-usable program
code embodied therewith, either in baseband or as part of a
carrier wave. The computer usable program code may be
transmitted using any appropriate medium, including but not
limited to the Internet, wireline, optical fiber cable, RF, etc.

10

20

30

40

45

4

Computer program code for carrying out operations of the
present disclosure may be written in an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like.
However, the computer program code for carrying out opera-
tions of the present disclosure may also be written in conven-
tional procedural programming languages, such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user’s com-
puter, partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through a local area network (LAN) or a
wide area network (WAN), or the connection may be made to
an external computer (for example, through the Internet using
an Internet Service Provider).

The present disclosure is described below with reference to
flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products accord-
ing to embodiments of the disclosure. It will be understood
that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illus-
trations and/or block diagrams, can be implemented by com-
puter program instructions. These computer program instruc-
tions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable
data processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
a computer-readable memory that can direct a computer or
other programmable data processing apparatus to function in
a particular manner, such that the instructions stored in the
computer-readable memory produce an article of manufac-
ture including instruction means which implement the func-
tion/act specified in the flowchart and/or block diagram block
or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per-
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other program-
mable apparatus provide steps for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

System Overview:

Referring to FIG. 1, there is shown data caching process 10
that may reside on and may be executed by storage system 12,
which may be connected to network 14 (e.g., the Internet or a
local area network). Examples of storage system 12 may
include, but are not limited to: a Network Attached Storage
(NAS) system, a Storage Area Network (SAN), a personal
computer with a memory system, a server computer with a
memory system, and a cloud-based device with a memory
system.

As is known in the art, a SAN may include one or more of
a personal computer, a server computer, a series of server
computers, a mini computer, a mainframe computer, a RAID
device and a NAS system. The various components of storage
system 12 may execute one or more operating systems,
examples of which may include but are not limited to:
Microsoft Windows XP Server™; Novell Netware™; Redhat
Linux™, Unix, or a custom operating system, for example.

US 9,336,157 B1

5

The instruction sets and subroutines of data caching pro-
cess 10, which may be stored on storage device 16 included
within storage system 12, may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) included within storage system 12. Storage
device 16 may include but is not limited to: a hard disk drive;
atape drive; an optical drive; a RAID device; a random access
memory (RAM); a read-only memory (ROM); and all forms
of flash memory storage devices.

Network 14 may be connected to one or more secondary
networks (e.g., network 18), examples of which may include
but are not limited to: a local area network; a wide area
network; or an intranet, for example.

Various data requests (e.g. data request 20) may be sent
from client applications 22, 24, 26, 28 to storage system 12.
Examples of data request 20 may include but are not limited
to data write requests (i.e. a request that content be written to
storage system 12) and data read requests (i.e. a request that
content be read from storage system 12).

The instruction sets and subroutines of client applications
22,24,26,28, which may be stored on storage devices 30, 32,
34, 36 (respectively) coupled to client electronic devices 38,
40, 42, 44 (respectively), may be executed by one or more
processors (not shown) and one or more memory architec-
tures (not shown) incorporated into client electronic devices
38, 40, 42, 44 (respectively). Storage devices 30, 32, 34, 36
may include but are not limited to: hard disk drives; tape
drives; optical drives; RAID devices; random access memo-
ries (RAM); read-only memories (ROM), and all forms of
flash memory storage devices. Examples of client electronic
devices 38, 40, 42, 44 may include, but are not limited to,
personal computer 38, laptop computer 40, personal digital
assistant 42, notebook computer 44, a server (not shown), a
data-enabled, cellular telephone (not shown), and a dedicated
network device (not shown).

Client electronic devices 38, 40, 42, 44 may each execute
an operating system, examples of which may include but are
not limited to Microsoft Windows™, Microsoft Windows
CE™, Redhat Linux™, or a custom operating system.

Users 46,48, 50, 52 may access storage system 12 directly
through network 14 or through secondary network 18. Fur-
ther, storage system 12 may be connected to network 14
through secondary network 18, as illustrated with link line 54.

The various client electronic devices may be directly or
indirectly coupled to network 14 (or network 18). For
example, personal computer 38 is shown directly coupled to
network 14 via a hardwired network connection. Further,
notebook computer 44 is shown directly coupled to network
18 via a hardwired network connection. Laptop computer 40
is shown wirelessly coupled to network 14 via wireless com-
munication channel 56 established between laptop computer
40 and wireless access point (i.e., WAP) 58, which is shown
directly coupled to network 14. WAP 58 may be, for example,
an IEEE 802.11a, 802.11b, 802.11g, 802.11n, Wi-Fi, and/or
Bluetooth device that is capable of establishing wireless com-
munication channel 56 between laptop computer 40 and WAP
58. Personal digital assistant 42 is shown wirelessly coupled
to network 14 via wireless communication channel 60 estab-
lished between personal digital assistant 42 and cellular net-
work/bridge 62, which is shown directly coupled to network
14.

As is known in the art, all of the IEEE 802.11x specifica-
tions may use Ethernet protocol and carrier sense multiple
access with collision avoidance (i.e., CSMA/CA) for path
sharing. The various 802.11x specifications may use phase-
shift keying (i.e., PSK) modulation or complementary code
keying (i.e., CCK) modulation, for example. As is known in

25

35

40

45

6

the art, Bluetooth is a telecommunications industry specifi-
cation that allows e.g., mobile phones, computers, and per-
sonal digital assistants to be interconnected using a short-
range wireless connection.
The Data Caching Process:

For the following discussion, client application 22 is going
to be described for illustrative purposes. However, this is not
intended to be a limitation of this disclosure, as other client
applications (e.g., client applications 24, 26, 28) may be
equally utilized.

For illustrative purposes, storage system 12 will be
described as being a network-based storage system that
includes a plurality of electro-mechanical backend storage
devices. However, this is for illustrative purposes only and is
not intended to be a limitation of this disclosure, as other
configurations are possible and are considered to be within
the scope of this disclosure. For example and as discussed
above, storage system 12 may be a personal computer that
includes a single electro-mechanical storage device.

Referring also to FIG. 2, storage system 12 may include a
server computer/controller (e.g. server computer/controller
100), and a plurality of storage targets T,_, (e.g. storage tar-
gets 102, 104, 106, 108). Storage targets 102, 104, 106, 108
may be configured to provide various levels of performance
and/or high availability. For example, one or more of storage
targets 102, 104, 106, 108 may be configured as a RAID 0
array, in which data is striped across storage targets. By
striping data across a plurality of storage targets, improved
performance may be realized. However, RAID 0 arrays do not
provide a level of high availability. Accordingly, one or more
of storage targets 102, 104, 106, 108 may be configured as a
RAID 1 array, in which data is mirrored between storage
targets. By mirroring data between storage targets, a level of
high availability is achieved as multiple copies of the data are
stored within storage system 12.

While storage targets 102, 104, 106, 108 are discussed
above as being configured in a RAID 0 or RAID 1 array, this
is for illustrative purposes only and is not intended to be a
limitation of this disclosure, as other configurations are pos-
sible. For example, storage targets 102, 104, 106, 108 may be
configured as a RAID 3, RAID 4, RAID 5 or RAID 6 array.

While in this particular example, storage system 12 is
shown to include four storage targets (e.g. storage targets 102,
104, 106, 108), this is for illustrative purposes only and is not
intended to be a limitation of this disclosure. Specifically, the
actual number of storage targets may be increased or
decreased depending upon e.g. the level of redundancy/per-
formance/capacity required.

Storage system 12 may also include one or more coded
targets 110. As is known in the art, a coded target may be used
to store coded data that may allow for the regeneration of data
lost/corrupted on one or more of storage targets 102,104, 106,
108. An example of such a coded target may include but is not
limited to a hard disk drive that is used to store parity data
within a RAID array.

While in this particular example, storage system 12 is
shown to include one coded target (e.g., coded target 110),
this is for illustrative purposes only and is not intended to be
a limitation of this disclosure. Specifically, the actual number
of coded targets may be increased or decreased depending
upon e.g. the level of redundancy/performance/capacity
required.

Examples of storage targets 102, 104, 106, 108 and coded
target 110 may include one or more electro-mechanical hard
disk drives, wherein a combination of storage targets 102,
104, 106, 108 and coded target 110 may form non-volatile,
electro-mechanical memory system 112.

US 9,336,157 B1

7

The manner in which storage system 12 is implemented
may vary depending upon e.g. the level of redundancy/per-
formance/capacity required. For example, storage system 12
may be a RAID device in which server computer/controller
100 is a RAID controller card and storage targets 102, 104,
106, 108 and/or coded target 110 are individual “hot-swap-
pable” hard disk drives. An example of such a RAID device
may include but is not limited to an NAS device. Alterna-
tively, storage system 12 may be configured as a SAN, in
which server computer/controller 100 may be e.g., a server
computer and each of storage targets 102, 104, 106, 108
and/or coded target 110 may be a RAID device and/or com-
puter-based hard disk drive. Further still, one or more of
storage targets 102, 104, 106, 108 and/or coded target 110
may be a SAN.

In the event that storage system 12 is configured as a SAN,
the various components of storage system 12 (e.g. server
computer/controller 100, storage targets 102, 104, 106, 108,
and coded target 110) may be coupled using network infra-
structure 114, examples of which may include but are not
limited to an Ethernet (e.g., Layer 2 or Layer 3) network, a
fiber channel network, an InfiniBand network, or any other
circuit switched/packet switched network.

Storage system 12 may execute all or a portion of data
caching process 10. The instruction sets and subroutines of
data caching process 10, which may be stored on a storage
device (e.g., storage device 16) coupled to server computer/
controller 100, may be executed by one or more processors
(not shown) and one or more memory architectures (not
shown) included within server computer/controller 100. Stor-
age device 16 may include but is not limited to: a hard disk
drive; a tape drive; an optical drive; a RAID device; a random
access memory (RAM); a read-only memory (ROM); and all
forms of flash memory storage devices.

As discussed above, various datarequests (e.g. data request
20) may be generated. For example, these data requests may
be sent from client applications 22, 24, 26, 28 to storage
system 12. Additionally/alternatively and when server com-
puter/controller 100 is configured as an application server,
these data requests may be internally generated within server
computer/controller 100. Examples of data request 20 may
include but are not limited to data write request 116 (i.e. a
request that content 118 be written to storage system 12) and
data read request 120 (i.e. a request that content 118 be read
from storage system 12).

Server computer/controller 100 may include input-output
logic 122 (e.g., a network interface card or a Host Bus Adap-
tor (HBA)), processing logic 124, and first cache system 126.
Examples of first cache system 126 may include but are not
limited to a volatile, solid-state, cache memory system (e.g.,
a dynamic RAM cache memory system) and/or a non-vola-
tile, solid-state, cache memory system (e.g., a flash-based,
cache memory system).

During operation of server computer/controller 100, con-
tent 118 to be written to storage system 12 may be received by
input-output logic 122 (e.g. from network 14 and/or network
18) and processed by processing logic 124. Additionally/
alternatively and when server computer/controller 100 is con-
figured as an application server, content 118 to be written to
storage system 12 may be internally generated by server
computer/controller 100. As will be discussed below in
greater detail, processing logic 124 may initially store content
118 within first cache system 126.

Depending on the manner in which first cache system 126
is configured, processing logic 124 may immediately write
content 118 to second cache system 128/non-volatile, electro-
mechanical memory system 112 (if first cache system 126 is

15

40

45

55

8

configured as a write-through cache) or may subsequently
write content 118 to second cache system 128/non-volatile,
electro-mechanical memory system 112 (if first cache system
126 is configured as a write-back cache). Additionally and in
certain configurations, processing logic 124 may calculate
and store coded data on coded target 110 (included within
non-volatile, electromechanical memory system 112) that
may allow for the regeneration of data lost/corrupted on one
or more of storage targets 102, 104, 106, 108. For example, if
processing logic 124 was included within a RAID controller
card or a NAS/SAN controller, processing logic 124 may
calculate and store coded data on coded target 110. However,
if processing logic 124 was included within e.g., an applica-
tion server, data array 130 may calculate and store coded data
on coded target 110.

Examples of second cache system 128 may include but are
not limited to a volatile, solid-state, cache memory system
(e.g., a dynamic RAM cache memory system) and/or a non-
volatile, solid-state, cache memory system (e.g., a flash-
based, cache memory system).

The combination of second cache system 128 and non-
volatile, electromechanical memory system 112 may form
data array 130, wherein first cache system 126 may be sized
so that the number of times that data array 130 is accessed
may be reduced. Accordingly, by sizing first cache system
126 so that first cache system 126 retains a quantity of data
sufficient to satisfy a significant quantity of data requests
(e.g., data request 20), the overall performance of storage
system 12 may be enhanced. As will be described below in
greater detail, first cache system 126 may be a content-aware
cache system.

Further, second cache system 128 within data array 130
may be sized so that the number of times that non-volatile,
electromechanical memory system 112 is accessed may be
reduced. Accordingly, by sizing second cache system 128 so
that second cache system 128 retains a quantity of data suf-
ficient to satisfy a significant quantity of data requests (e.g.,
data request 20), the overall performance of storage system
12 may be enhanced. As will be described below in greater
detail, second cache system 128 may be a content-aware
cache system.

As discussed above, the instruction sets and subroutines of
data caching process 10, which may be stored on storage
device 16 included within storage system 12, may be
executed by one or more processors (not shown) and one or
more memory architectures (not shown) included within stor-
age system 12. Accordingly, in addition to being executed on
server computer/controller 100, some or all of the instruction
sets and subroutines of data caching process 10 may be
executed by one or more processors (not shown) and one or
more memory architectures (not shown) included within data
array 130.

Referring also to FIGS. 3-4, data request 20 (e.g. data read
request 116 and/or data write request 120) may be processed
by server computer/controller 100 to extract pertinent infor-
mation concerning these data requests.

When data request 20 is a data write request (e.g., write
request 116), write request 116 may include content 118 to be
written to data array 130. Additionally, write request 116 may
include a storage address 200 that defines the intended stor-
age location within storage array 130 at which content 118 is
to be stored. For example, storage address 200 may define a
particular logical unit within data array 130 (e.g., a LUN or
Logical Unit Number) and a particular storage address within
that specific logical unit (e.g., an LBA or Logical Block
Address) for storing content 118.

US 9,336,157 B1

9

Concerning read request 120, these requests do not include
any content to be written to data array 130, as these are read
requests and concern content to be read from data array 130.
Read request 120 may include a storage address 202 that
defines the storage location within storage array 130 from
which content is to be retrieved. For example, storage address
202 may define a particular logical unit within data array 130
(e.g.,aLUN or Logical Unit Number) and a particular storage
address within that specific logical unit (e.g., an LBA or
Logical Block Address) for retrieving the content sought from
data array 130.

As will be discussed below in greater detail and referring
also to FIG. 5, data caching process 10 may maintain content
directory 250, which may be used to locate various pieces of
content within first cache system 126. In one particular
embodiment of content directory 250, content directory 250
may include plurality of entries 252, wherein each of these
entries may identify: data array storage address 200/202 (e.g.
alogical storage unit and a storage address at which a specific
piece of previously-written content is located within storage
array 130); first cache address 254 (e.g., the location within
first cache system 126 at which the specific piece of previ-
ously-written content is also located), and content identifier
256 for the specific piece of previously-written content.
Accordingly, content directory 250 may identify the location
of specific pieces of content included within first cache sys-
tem 126 and their corresponding pieces of data within data
array 130, as well as a content identifier that uniquely iden-
tifies the specific piece of content.

Content identifier 256 may be used in a content-aware
caching system and may, specifically, be a mathematical rep-
resentation of the specific piece of previously-written content
that may allow e.g. server computer/controller 100 to quickly
determine whether two pieces of previously-written content
are identical, as identical pieces of content would have iden-
tical content identifiers. In one particular embodiment, con-
tent identifier 256 may be a hash function (e.g., a crypto-
graphic hash) of the previously-written content. Accordingly,
through the use of a content-aware caching system, duplicate
data entries within first cache system 126 and/or second cache
system 128 may be quickly identified, avoided, and/or elimi-
nated.

As is known in the art, a hash function is an algorithm/
subroutine that maps large data sets to smaller data sets. The
values returned by a hash function are typically called hash
values, hash codes, hash sums, checksums or simply hashes.
Hash functions are mostly used to accelerate table lookup or
data comparison tasks such as e.g., finding items in a database
and detecting duplicated or similar records in a large file.
General Read Request Processing:

During operation of server computer/controller 100, data
caching process 10 may receive read request 120 on first
cache system 126, wherein read request 120 identifies previ-
ously-written content (as defined by storage address 202)
included within data array 130.

For example, assume that user 46 is using client application
22 to access data (i.e. content 132) that is currently being
stored on data array 130. Accordingly, client application 22
may generate read request 120 which, as discussed above,
may define a particular logical unit within data array 130
(e.g.,aLUN or Logical Unit Number) and a particular storage
address within that specific logical unit (e.g., an LBA or
Logical Block Address) for retrieving content 132 sought
from data array 130 by client application 22.

Assume that read request 120 defines LUNO/LBAS as the
location of content 132 within data array 130. Upon receiving
read request 120, data caching process 10 may compare the

10

15

20

25

30

35

40

45

50

55

60

65

10

location of content 132 within data array 130 (namely LUNO/
LBAS) with each of the plurality of entries 252 defined within
content directory 250 to determine if a copy of content 132 is
locally available (i.e., cached) within first cache system 126.
If LUNO/LBAS was defined within content directory 250
(meaning that a local cached copy of content 132 is present/
available within first cache system 126), that particular entry
would also define a corresponding first cache address (e.g.
first cache address 254) within first cache system 126 at which
content 132 would be locally-available and retrievable from
the first cache system 126. Conversely, in the event that
LUNO/LBAS is not defined within content directory 250
(meaning that a local cached copy of content 132 is not
present/available within first cache system 126), data caching
process 10 may need to obtain content 132 identified in read
request 120 from data array 130.

In this particular example, since LUNO/LBAS5 is not
defined within content directory 250, a local cached copy of
content 132 is not present/available within first cache system
126 and data caching process 10 will be need to obtain content
132 from data array 130.

Once content 132 is obtained by data caching process 10
from data array 130, data caching process 10 may store con-
tent 132 within first cache system 126 and may provide con-
tent 132 to client application 22, thus satisfying read request
120. Additionally, content directory 250 may be amended by
data caching process 10 to include an entry (e.g., entry 258)
that defines the data array storage address 200/202 (e.g.
LUNO/LBAS); first cache address 254 (e.g., 111110), and
content identifier 256 (e.g., ablccba) for content 132.

As discussed above, data array 130 may include second
cache system 128. Accordingly, data caching process 10 may
execute the above-described functionality with respect to sec-
ond cache system 128.

General Write Request Processing:

During operation of server computer/controller 100, data
caching process 10 may receive write request 116 on first
cache system 126, wherein write request 116 identifies new
content (e.g., content 118) to be written to data array 130.

For example, assume that user 46 is using client application
22 to create content (i.e. content 118) that is to be stored on
data array 130. Accordingly, client application 22 may gen-
erate write request 116 which, as discussed above, may define
aparticular logical unit within data array 130 (e.g., a LUN or
Logical Unit Number) and a particular storage address within
that specific logical unit (e.g., an LBA or Logical Block
Address) for storing content 118 within data array 130.

As discussed above and depending on the manner in which
first cache system 126 is configured, data caching process 10
may immediately write content 118 to data array 130 (if first
cache system 126 is configured as a write-through cache) or
may subsequently write content 118 to data array 130 (if first
cache system 126 is configured as a write-back cache).

Assuming that first cache system 126 in this example is
configured as a write-through cache, data caching process 10
may immediately write content 118 to LUNO/LBAO within
data array 130 (as defined within write request 116). Addi-
tionally, data caching process 10 may locally-store content
118 within first cache system 126 and may amend content
directory 250 to include an entry (e.g., entry 260) that defines
the data array storage address 200/202 (e.g. LUNO/LBAO);
first cache address 254 (e.g., 001011), and content identifier
256 (e.g., acdfcla) for content 118.

As discussed above, data array 130 may include second
cache system 128. Accordingly, data caching process 10 may
execute the above described functionality with respect to
second cache system 128.

US 9,336,157 B1

11

Content Aware Caching

As discussed above, content directory 250 may include a
content identifier 256 that may be used in a content-aware
caching system. A typical example of content identifier 256
may include but is not limited to a hash function of the content
that content identifier 256 is associated with. Accordingly,
through the use of content identifier 256 within a content-
aware caching system, duplicate data entries within first
cache system 126 and/or second cache system 128 may be
quickly identified, avoided, and/or eliminated.

For example, upon receiving write request 116 and content
118, data caching process 10 may generate content identifier
256 for content 118. As discussed above, content identifier
256 generated for the content (i.e., content 118) identified
within write request 116 may be a hash function (e.g., a
cryptographic hash) of content 118.

Assume for illustrative purposes that write request 116
includes storage address 200 that defines the intended storage
location for content 118 as LUNO/LBAO. Accordingly, upon
receiving write request 116, data caching process 10 may
generate content identifier 256 for content 118. Assume for
illustrative purposes that data caching process 10 generates a
hash of content 118, resulting in the generation of content
identifier 256 (namely hash value acdfcla).

This newly-generated content identifier 256 (i.e. acdfcla)
associated with content 118 may be compared to each of the
other content identifiers (namely abalaby, alazchb, abalabz,
alazcha) included within content directory 250 for first cache
system 126 to determine if the newly-generated content iden-
tifier 256 (i.e. acdfcla) matches any of the other content iden-
tifiers (namely abalaby, alazchb, abalabz, alazcha) included
within content directory 250.

As discussed above, each entry of the plurality of entries
252 included within content directory 250 is associated with
a unique piece of content included within (in this example)
first cache system 126. Accordingly, each unique content
identifier included within content directory 250 may be asso-
ciated with a unique piece of content written to (in this
example) first cache system 126.

I, when performing this comparison, data caching process
10 does notidentify a content identifier (i.e., abalaby, alazchb,
abalabz, alazcha) within content directory 250 that matches
the above-described, newly-generated content identifier (i.e.
acdfcla), data caching process 10 may write content 118 to (in
this example) first cache system 126 and may provide a copy
of' content 118 to data array 130 for storage within data array
130. Additionally, data caching process 10 may modify con-
tent directory 250 to include a new entry (i.e., entry 260) that
defines the newly-generated content identifier (i.e. acdfcla),
the location of content 118 within (in this example) first cache
system 126 (i.e., 001011), and the location of content 118
within data array 130 (i.e., LUNO/LBAO).

I, when performing this comparison, data caching process
10 identified a content identifier within content directory 250
that matched the above-described, newly-generated content
identifier (i.e. acdfcla), data caching process 10 would per-
form differently.

To illustrate how data caching process 10 would react if it
found a matching content identifier, further assume for illus-
trative purposes that a second write request (i.e., write request
116') includes storage address 200' that defines the intended
storage location for content 118' as LUNO/LBA2. Accord-
ingly, upon receiving write request 116', data caching process
10 may generate content identifier 256 for content 118"
Assume for illustrative purposes that data caching process 10
generates a hash of content 118', resulting in the generation of
content identifier 256 (namely hash value alazcha).

10

20

40

45

50

12

This newly-generated content identifier 256 (i.e. alazcha)
associated with content 118' may be compared to each of the
other content identifiers (namely abalaby, alazchb, abalabz,
alazcha) included within content directory 250 for (in this
example) first cache system 126 to determine if the newly-
generated content identifier 256 (i.e. alazcha) matches any of
the other content identifiers (namely abalaby, alazchb, abal-
abz, alazcha) included within content directory 250.

If, when performing this comparison, data caching process
10 does identify a content identifier (namely alazcha) within
content directory 250 that matches the above-described,
newly-generated content identifier (i.e. alazcha), data caching
process 10 may perform a couple of functions.

For example, data caching process 10 may modity the
entry (i.e., entry 262) within content directory 250 that is
associated with the matching content identifier (i.e., alazcha)
to include storage address 200' that defines the intended stor-
age location for content 118' (i.e., LUN0/LBA2 within data
array 130), thus generating modified entry 262'. Accordingly,
modified entry 262' identifies that the pieces of content that
are currently stored at LUN4/LBA7 and LUNO/LBA2 within
data array 130 are identical. Accordingly, a single piece of
cached content (located at first cache address 010111 within,
in this example, first cache system 126) may be used as alocal
cached copy for both pieces of content stored on data array
130.

While the system is described above as modifying entry
262 by adding a second LUN/LBA designation to generate
modified entry 262', this is for illustrative purposes only and
is not intended to be a limitation of this disclosure, as other
configurations are possible. For example, sub-tables/sub-en-
tries may be utilized to show the manner in which multiple
LUNs/LBAs are mapped to a single piece of content within,
for example, first cache system 126.

As discussed above, data array 130 may include second
cache system 128. Accordingly, data caching process 10 may
execute the above-described content aware functionality with
respect to second cache system 128.

Managing Access to LUNs

Assume for illustrative purposes that a second server com-
puter/controller (e.g. server computer/controller 134) is also
coupled to data array 130 via network infrastructure 114.
Accordingly, each of server computer/controller 100 and
server computer/controller 134 may gain control and relin-
quish control of the various logical units (e.g. LUNs) within
data array 130. Further, each of server computer/controller
100 and server computer/controller 134 may write data to and
read data from various storage addresses (e.g., an LBA or
Logical Block Address) within the LUNs included in data
array 130.

Accordingly, problems may be realized when e.g. server
computer/controller 100 and server computer/controller 134
perform tasks that are in conflict with each other. For illus-
trative purposes, assume that a first server computer/control-
ler (e.g. server computer/controller 100) writes a piece of
content (e.g. content 118) to an address (e.g. LUNO/LBA2)
within storage array 130. As discussed above, a copy of this
content (e.g. content 118) will also be written to first cache
system 126. Further assume that a second server computer/
controller (e.g. server computer/controller 134) writes a piece
of content (e.g. content 136) to the same address (e.g. LUNO/
LBA2) within storage array 130. Similarly, a copy of this
content (e.g. content 136) would also be written to a local
cache system (e.g., cache system 138) within server com-
puter/controller 134.

Accordingly and in this situation, if a read request is
received concerning LUNO/LBA2 within data array 130, the

US 9,336,157 B1

13

data provided to the requester will vary depending upon
which server computer/controller fulfills the request. For
example, if the read request was received by server computer/
controller 134, server computer/controller 134 would fulfill
the read request by providing the locally-cached copy of the
data (which is stored within cache system 138 of server com-
puter/controller 134). In this situation, the data provided to
the requester would be correct, in that the cached data
matches the data stored at LUNO/LBA2 within data array 130.

However, if the read request was received by server com-
puter/controller 100, server computer/controller 100 would
also fulfill the read request by providing the locally-cached
copy of the data (which is stored within first cache system 126
of server computer/controller 100). Unfortunately and in this
situation, the data provided to the requester would be incor-
rect, in that the cached data does not match the data stored at
LUNO0/LBA2 within data array 130.

Ownership of the various LUNs included within data array
130 may be controlled via various SCSI commands, namely
the Mode Select command and the Mode Sense command. As
is known in the art, SCSI (i.e., Small Computer System Inter-
face) is a set of standards for physically connecting and trans-
ferring data between computers and peripheral devices. Spe-
cifically, the SCSI standards define commands, protocols and
interfaces.

The SCSI Mode Select command may be used to modify
device information contained in buffers associated with a
related device, wherein the SCSI Mode Sense command may
be used to read the information contained in these buffers.

In order to control ownership ofthe various LUNs included
within data array 130 via the Mode Select command and the
Mode Sense command, data caching process 10 may estab-
lish a buffer (e.g., buffer 140) for each LUN included within
data array 130. These buffers are typically located within data
array 130 but need not be located on the physical storage
device associated with the LUN. This buffer may be written to
via the Mode Select command and read from via the Mode
Sense command.

The Mode Select command and the Mode Sense command
issued by data caching process 10 are different than tradi-
tional Mode Select and Mode Sense commands, in that data
caching process 10 produces an expanded Mode Select and
Mode Sense command that includes additional data in the
form of a vender unique (VU) page that defines a control field
that identifies the current control status for the LUN (having
apossible value of 1 or 0) and a GUID field that identifies the
host (i.e., the appropriate server computer/controller). The
GUID for the host is typically driven by the MAC address for
the host (i.e., the server computer/controller). Accordingly,
the above-described buffers (e.g., butfer 140) need to be sized
to accommodate these expanded Mode Select and Mode
Sense commands.

Obtaining Control of a LUN

When the above-described system initially starts up, the
control field within a buffer for a LUN is defined as 0 and the
GUID field within a buffer for a LUN is defined as all zeros,
thus indicating that no device is in control of the related LUN.

Assume for illustrative purposes that the above-described
system has just started up and LUN 0 (included within data
array 130) is not being controlled by any host. During this
startup mode, the various hosts included within the system
may attempt to obtain control of LUN 0. For example, server
computer/controller 100 and server computer/controller 134
may each generate Mode Select commands in an attempt to
obtain control of LUNO. For example, server computer/con-
troller 100 may generate Mode Select command 142 that
defines a control value of 1 and a GUID that identifies server

10

15

20

25

30

35

40

45

50

55

60

65

14

computer/controller 100. Additionally, server computer/con-
troller 134 may generate Mode Select command 144 that
defines a control value of 1 and a GUID that identifies server
computer/controller 134.

Data caching process 10 may receive 300 these Mode
Select commands (e.g., Mode Select commands 142, 144)
concerning this single LUN (e.g., LUN 0) from each of these
potential hosts, namely server computer/controller 100 and
server computer/controller 134.

As discussed above, each of these Mode Select commands
(Mode Select commands 142, 144) defines control informa-
tion and host identifier information for its related host,
namely server computer/controller 100 for Mode Select com-
mand 142 and server computer/controller 134 for Mode
Select command 144.

Data caching process 10 may process 302 the Mode Select
commands received in a serial fashion and in accordance with
the order in which the Mode Select commands were received.
Accordingly, assume for illustrative purposes that Mode
Select command 142 was received by data caching process 10
before Mode Select command 144. Accordingly, data caching
process 10 may process 302 Mode Select command 142
before Mode Select command 144. Accordingly, the first
Mode Select command received (namely Mode Select com-
mand 142) is accepted by data caching process 10 and sub-
sequent Mode Select commands received (namely Mode
Select command 144) are rejected by data caching process 10,
thus defining one accepted Mode Select command (namely
Mode Select command 142) and one or more rejected Mode
Select commands (namely Mode Select command 144).

While in this particular example, two potential hosts are
shown (namely server computer/controller 100 and server
computer/controller 134), this is for illustrative purposes only
and is not intended to be a limitation on this disclosure, as the
number of potential hosts may be increased or decreased
accordingly.

For the accepted Mode Select command (namely Mode
Select command 142), the control information and host iden-
tifier information included within the accepted Mode Select
command may be written 304 to buffer 140 associated with
e.g. LUN 0. As discussed above, buffer 140 includes a control
field and a GUID field. Accordingly, the control information
included within Mode Select command 142 may be written
304 to the control field of buffer 140 and the host identifier
information included within Mode Select command 142 may
be written 304 to the GUID field within buffer 140.

As discussed above, data caching process 10 may identify
one or more rejected Mode Select commands (namely Mode
Select command 144). Accordingly, data caching process 10
may notify 306 the host associated with each of these rejected
Mode Select commands (namely server computer/controller
134).

Inthe event that a particular LUN (e.g., LUN 0) is restarted
(e.g. due to a crash or maintenance), data caching process 10
may reset 308 the control of this particular LUN to a non-
controlled state. Resetting 308 control of the LUN to a non-
controlled state may include populating 310 the control field
within buffer 140 associated with LUN 0 with a 0 and popu-
lating 312 the GUID field within buffer 140 associated with
LUN 0 with one or more zeros.

Relinquishing Control of a LUN

Assume for illustrative purposes that after gaining control
of LUN 0, server computer/controller 100 no longer wishes
to/needs to control LUN 0. Accordingly, server computer/
controller 100 may generate a Mode Select command (Mode
Select command 142) that results in server computer/control-
ler 100 relinquishing control of LUN 0. Specifically, this

US 9,336,157 B1

15

Mode Select command to relinquish control of LUN 0 may
include control information that identifies control as 0 and
host identifier information that identifies server computer/
controller 100 (the host that last had control of the LUN).

Upon receiving 350 Mode Select command 142 from
server computer/controller 100, data caching process 10 may
process 352 Mode Select command 142 to determine if the
control information included within Mode Select command
142 signifies an intent by the host (i.e., server computer/
controller 100) to relinquish control of e.g., LUN 0. As dis-
cussed above, such intent would be signified if the control
information included within Mode Select command 142
identifies control as 0.

If data caching process 10 determines that the control infor-
mation included within Mode Select command 142 signifies
an intent to relinquish control of LUN 0, data caching process
10 may process the host identifier information included
within Mode Select command 142 to confirm 354 that the
host identifier information matches LUN control identifier
information currently stored within bufter 140 (which defines
the host that currently controls e.g., LUN 0).

As discussed above, when a particular host controls aLUN,
appropriate information concerning the controlling host is
written to the buffer associated with the LUN (namely buffer
140). Accordingly, if the GUID information within buffer 140
matches the host identifier information included within Mode
Select command 142, the host that generated Mode Select
command 142 (namely server computer/controller 100) has
the authority to relinquish control of LUN 0. Therefore, the
control information and/or the host identifier information
included within Mode Select command 142 may be written
356 to buffer 140 to effectuate the relinquishing of control of
LUNO.

Since (as discussed above) the control information
included within Mode Select command 142 is a 0, when data
caching process 10 writes 356 the control information to
buffer 140, data caching process 10 may merely need to write
358 a zero to the control field within buffer 140.

If the host identifier information included within Mode
Select command 142 matches the LUN control identifier
information currently stored within buffer 140 and, therefore,
control will be relinquished by the requesting host, data cach-
ing process 10 may flush 360 the host cache associated with
LUN 0. Accordingly, in the event that server computer/con-
troller 100 successfully relinquishes control of LUN 0, data
caching process 10 may flush the portion of first cache system
126 associated with LUN 0 due to server computer/controller
100 no longer controlling LUN 0 and, over time, the data
included within LUN 0 will be overwritten and will no longer
match the data included within first cache portion 126.

In the event that server computer/controller 100 subse-
quently receives a read request concerning data stored within
LUN 0 (which server computer/controller 100 no longer con-
trols), server computer/controller 100 may retrieve the data
directly from LUN 0 and (as server computer/controller 100
no longer controls LUN 0) will not save a copy of the retrieved
data within first cache portion 126.

In the event that the host identifier information included
within Mode Select command 142 does not match the LUN
control identifier information currently stored within buffer
140, the requesting host does not have the authority to relin-
quish control of LUN 0. Accordingly, data caching process 10
may reject 362 the Mode Select command and may notify the
requesting host that their Mode Select command was
rejected.

10

15

20

25

30

35

40

45

50

55

60

65

16
Reboot after Crash of Host

During the course of normal operations, a host (e.g. server
computer/controller 100 and/or server computer/controller
134) may crash. This may be done unintentionally (e.g., due
to a software malfunction) or may be done intentionally (e.g.
to protect the integrity of the data stored within data array
130). For example, if a host received a write request to write
data to a LUN that it was not controlling and the host pro-
cessed such a request, the resulting data stored within the
LUN would be corrupt, as the data stored within the LUN
would not correspond to the copy of the data that was locally-
cached by the host that is controlling the LUN. Accordingly,
the host receiving such a write request may intentionally
crash to avoid corrupting the data stored within the LUN.

Assume for illustrative purposes that server computer/con-
troller 134 crashed and is in the process of coming back
online. Accordingly, upon sensing 400 that a reboot sequence
is executing on server computer/controller 134 (due to the
occurrence of a crash event), data caching process 10 may
determine 402 at least one LUN that was being controlled by
the host (e.g. server computer/controller 134) prior to the
crash event, thus define at least one target LUN.

When determining 402 which LUNs were being controlled
by the host that is executing the reboot sequence, data caching
process 10 may access configuration file 146 (which may be
stored within data array 130) that defines which hosts have
control of which LUNs). Accordingly and in response to
server computer/controller 134 executing the reboot
sequence, data caching process 10 may simply access con-
figuration file 146 and look up server computer/controller 134
to determine which LUNSs server computer/controller 134
was controlling at the time of the crash event.

Assume for illustrative purposes that server computer/con-
troller 134 was only controlling a single LUN (namely LUN
1) at the time of the crash event. Accordingly, data caching
process 10 may prepare 404 a Mode Select command (e.g.,
Mode Select command 144) for the target LUNSs, which in
this example is only LUN 1. As discussed above, Mode Select
command 144 may define control information and host iden-
tifier information concerning the host (e.g., server computer/
controller 134) Accordingly and in this example, the control
information would be a 1 (as server computer/controller 134
wishes to regain control of LUN 1) and the host identifier
information would identify server computer/controller 134.

Data caching process 10 may process 406 Mode Select
command 144 to determine if the control information and
host identifier information included within Mode Select com-
mand 144 matches control information and host identifier
information included within a buffer (e.g. buffer 148) associ-
ated with the target LUN (e.g., LUN 1). If the control infor-
mation and host identifier information included within Mode
Select command 144 matches the control information and
host identifier information included within buffer 148, data
caching process 10 may grant 408 control of the target LUN
(i.e., LUN 1) to the requesting host (namely server computer/
controller 134).

As discussed above, when a particular host controls a[LUN,
appropriate information concerning the controlling host is
written to the buffer associated with the LUN (namely buffer
148). Accordingly, if the GUID information within buffer 148
matches the host identifier information included within Mode
Select command 144, the host identified within Mode Select
command 144 (namely server computer/controller 134) may
regain control of LUN 1.

If the control information and host identifier information
included within Mode Select command 144 does not match
the control information and host identifier information

US 9,336,157 B1

17

included within buffer 148, data caching process 10 may deny
410 the requesting host control of the target LUN (e.g., LUN
1) and may notify 412 the requesting host of the denial.
Obtaining Control of LUN after Death of Host

Assume for illustrative purposes that server computer/con-
troller 134 regains control of LUN 1. However, subsequent to
regaining control, server computer/controller 134 suffers a
system board failure and, therefore, for the purposes of this
example is considered to be offline (i.e., dead). As server
computer/controller 134 is dead, it cannot relinquish control
of LUN 1 in the manner described above. Further, assume for
illustrative purposes that server computer/controller 100
wishes to obtain control of LUN 1 (which is currently being
controlled by server computer/controller 134, which is dead).

Accordingly, server computer/controller 100 may prepare
aMode Select command (e.g., Mode Select command 142) to
obtain control of LUN 1 (i.e., to seize control away from
“dead” server computer/controller 134). When preparing
Mode Select command 142, the control information may be
defined as 0 and the host identifier information may identify
server computer/controller 100.

Upon receiving 450, Mode Select command 142 from
server computer/controller 100 concerning LUN 1 (which is
currently being controlled by server computer/controller
134), data caching process 10 may process 452 Mode Select
command 142 to determine if the control information and
host identifier information included within Mode Select com-
mand 142 signifies an intent by e.g. server computer/control-
ler 100 to seize control of LUN 1 from server computer/
controller 134.

When determining if there is an intent to seize control of
LUN 1 from server computer/controller 134, data caching
process 10 may determine if Mode Select command 142
includes control information set to 0 and includes host iden-
tifier information that identifies a host other than the host that
is currently controlling LUN 1. Since LUN 1 is currently
being controlled by server computer/controller 134 and the
host identifier information included within Mode Select com-
mand 142 identifies server computer/controller 100, data
caching process 10 will determine that there is an intent to
seize control of LUN 1 from server computer/controller 134.

Since the control information and host identifier informa-
tion signifies an intent to seize control of LUN 1 from server
computer/controller 134, the control information and host
identifier information included within Mode Select command
142 may be written 454 to buffer 148 (which is associated
with LUN 1). When writing 454 control information and host
identifier information included within Mode Select command
142, data caching process 10 may simply write 456 a zero to
the control field included within buffer 148.

When a host controls a LUN, the host will typically “check
in” periodically (e.g. every two minutes) to show that they are
still “alive” and controlling the LUN (as opposed to being
dead). These hosts may “check in” using the above-described
Mode Sense command to determine the status of e.g., buffer
148.

Accordingly and in the event that a host is indeed alive,
upon using the Mode Sense command (which reads the con-
tent of the buffer associated with the LUN), the host will be
able to see if control of the LUN was taken away. And if
control was taken away, data caching process 10 may allow
458 the host in question to use a Mode Select command (in the
manner described above) to regain control of the LUN. How-
ever, in the event that a host is “dead” such inquiries (in the
form of a Mode Sense command) and such control correc-
tions (in the form of a Mode Select command) will not be
made on behalf of the “dead” host.

10

15

20

25

30

35

40

45

50

55

60

65

18

Accordingly and continuing with the above-stated
example, once server computer/controller 100 issues Mode
Select command 142 to seize control of LUN 1 from server
computer/controller 134, server computer/controller 100
may rest until after the expiry of a defined verification period.
The length of this verification period is longer than the fre-
quency at which ahost “checks in”. As discussed above and in
this example, a host who is in control of a LUN “checks in”
every two minutes. Accordingly, a suitable length for the
above-described verification period may be six minutes,
which is long enough for (in this example) server computer/
controller 134 to “check in” and make their existence be
known.

After the expiration of this verification period, data caching
process 10 may read 458 (via a Mode Sense command) the
content of buffer 148 (i.e. the buffer associated with LUN 1).
In the event that server computer/controller 134 is still viable
(i.e., alive), server computer/controller 134 would have
“checked in” during the verification period, noticed the
changes made to buffer 148 by server computer/controller
100, and issued a Mode Select command to correct the same
and reestablish control of LUN 1. Accordingly, if data cach-
ing process 10 determines that buffer 148 was modified by
server computer/controller 134 during the verification period,
data caching process 10 may deem server computer/control-
ler 134 still viable (i.e., alive) and may abort 462 the attempt
by server computer/controller 100 to seize control of LUN 1
from server computer/controller 134. If, however, data cach-
ing process 10 determines that bufter 148 was not modified by
server computer/controller 134 during the verification period,
data caching process 10 may deem server computer/control-
ler 134 not viable (i.e., dead) and may transfer 464 control of
LUN 1 from server computer/controller 134 to server com-
puter/controller 100.

As will be appreciated by one skilled in the art, the present
disclosure may be embodied as a method, system, or com-
puter program product. Accordingly, the present disclosure
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
software, micro-code, etc.) or an embodiment combining
software and hardware aspects that may all generally be
referred to herein as a “circuit,” “module” or “system.” Fur-
thermore, the present disclosure may take the form of a com-
puter program product on a computer-usable storage medium
having computer-usable program code embodied in the
medium.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
disclosure. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

US 9,336,157 B1

19

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the disclosure. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present disclosure has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the disclosure in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the disclosure. The embodiment was chosen and
described in order to best explain the principles of the disclo-
sure and the practical application, and to enable others of
ordinary skill in the art to understand the disclosure for vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

A number of implementations have been described. Hav-
ing thus described the disclosure of the present application in
detail and by reference to embodiments thereof, it will be
apparent that modifications and variations are possible with-
out departing from the scope of the disclosure defined in the
appended claims.

What is claimed is:
1. A computer-implemented method comprising:
receiving a Mode Select command concerning a single
LUN from each of a plurality of potential hosts, wherein
each Mode Select command defines control information
and host identifier information concerning the potential
host associated with the Mode Select command,
wherein the control information of each Mode Select
command includes a request for control of the single
LUN by each of the plurality of potential hosts;

processing the received Mode Select commands in an order
in which the Mode Select commands were received,
wherein the first Mode Select command received is
accepted, thus defining an accepted Mode Select com-
mand;

writing the control information and host identifier infor-

mation included within the accepted Mode Select com-
mand to a buffer associated with the single LUN,
wherein the buffer includes a control field and a GUID
field;

rejecting subsequent received Mode Select commands

after the accepted Mode Select command; and
notifying the host associated with each of the rejected
subsequent received Mode Select commands.

2. The computer-implemented method of claim 1 further
comprising:

resetting control of the single LUN to a non-controlled

state if the single LUN is restarted.

3. The computer-implemented method of claim 2 wherein
resetting control of the single LUN to a non-controlled state
includes:

populating the control field associated with the single LUN

with one or more zeros; and

10

15

20

25

30

35

40

45

50

55

60

65

20

populating the GUID field associated with the single LUN

with one or more zeros.
4. The computer-implemented method of claim 1 wherein
the single LUN is included within a data array.
5. The computer-implemented method of claim 4 wherein
the data array includes one or more electro-mechanical stor-
age devices.
6. The computer-implemented method of claim 1 wherein
one or more of the potential hosts are application servers.
7. A computer program product residing on a non-transi-
tory computer readable medium having a plurality of instruc-
tions stored thereon which, when executed by a processor,
cause the processor to perform operations comprising:
receiving a Mode Select command concerning a single
LUN from each of a plurality of potential hosts, wherein
each Mode Select command defines control information
and host identifier information concerning the potential
host associated with the Mode Select command,
wherein the control information of each Mode Select
command includes a request for control of the single
LUN by each of the plurality of potential hosts;

processing the received Mode Select commands in an order
in which the Mode Select commands were received,
wherein the first Mode Select command received is
accepted, thus defining an accepted Mode Select com-
mand;

writing the control information and host identifier infor-

mation included within the accepted Mode Select com-
mand to a buffer associated with the single LUN,
wherein the buffer includes a control field and a GUID
field;

rejecting subsequent received Mode Select commands

after the accepted Mode Select command; and
notifying the host associated with each of the rejected
subsequent received Mode Select commands.

8. The computer program product of claim 7 further com-
prising instructions for:

resetting control of the single LUN to a non-controlled

state if the single LUN is restarted.

9. The computer program product of claim 8 wherein the
instructions for resetting control of the single LUN to a non-
controlled state include instructions for:

populating the control field associated with the single LUN

with one or more zeros; and

populating the GUID field associated with the single LUN

with one or more zeros.

10. The computer program product of claim 7 wherein the
single LUN is included within a data array.

11. The computer program product of claim 10 wherein the
data array includes one or more electro-mechanical storage
devices.

12. The computer program product of claim 7 wherein one
or more of the potential hosts are application servers.

13. A computing system including at least one processor
and at least one memory architecture coupled with the at least
one processor, wherein the computing system is configured to
perform operations comprising:

receiving a Mode Select command concerning a single

LUN from each of a plurality of potential hosts, wherein
each Mode Select command defines control information
and host identifier information concerning the potential
host associated with the Mode Select command,
wherein the control information of each Mode Select
command includes a request for control of the single
LUN by each of the plurality of potential hosts;
processing the received Mode Select commands in an order
in which the Mode Select commands were received,

US 9,336,157 B1

21

wherein the first Mode Select command received is
accepted, thus defining an accepted Mode Select com-
mand; and

writing the control information and host identifier infor-

mation included within the accepted Mode Select com-
mand to a buffer associated with the single LUN,
wherein the buffer includes a control field and a GUID
field;

rejecting subsequent received Mode Select commands

after the accepted Mode Select command; and
notifying the host associated with each of the rejected
subsequent received Mode Select commands.

14. The computing system of claim 13 further configured
to perform operations comprising:

resetting control of the single LUN to a non-controlled

state if the single LUN is restarted.

15. The computing system of claim 14 wherein resetting
control of the single LUN to a non-controlled state includes:

populating the control field associated with the single LUN

with one or more zeros; and

populating the GUID field associated with the single LUN

with one or more zeros.

16. The computing system of claim 13 wherein the single
LUN is included within a data array.

17. The computing system of claim 16 wherein the data
array includes one or more electro-mechanical storage
devices.

18. The computing system of claim 13 wherein one or more
of the potential hosts are application servers.

#* #* #* #* #*

10

15

20

25

30

22

